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Abstract—This contribution presents a novel approach for
efficient online planning of topologically distinctive mobile robot
trajectories. Trajectory optimization deforms an initial coarse
path drafted by a global planner with respect to robot motion
related objectives and constraints. The primary objective is to
reach a goal state in minimal time on a collision free path that
adheres to the kinematic and dynamic constraints of the mobile
robot. Conventional local planners get often stuck in a local
optimal trajectory as they are unable to transit across obstacles.

Our approach seeks the globally optimal trajectory as it
maintains and optimizes a subset of admissible candidate tra-
jectories of distinctive topologies in parallel. In case of dynamic
environments the planner switches to the current globally opti-
mal trajectory among the candidate set. The online trajectory
planning with timed elastic bands is tightly integrated with
the robot motion feedback control. The comparative analysis
with conventional local planners confirms the advantages of
maintaining distinctive topologies to circumnavigate dynamic
obstacles.

I. INTRODUCTION

Trajectory planning is a fundamental problem in robotic
research and application. The challenges increase with the
complexity of the dynamic environment and motion task which
favors trajectory planning over path planning as the former
explicitly considers dynamic aspects of robot motion. On the
other hand, planning trajectories is computational more de-
manding which limits its close integration with motion control.
However, online generated trajectories respond to changes in
the environment or perturbations of the robot motion. For
an overview on established approaches to path and trajectory
planning the reader is referred to [1].

Delsart et al. extend the original elastic band approach
by Quinlan et al. [2] to the online deformation of trajectories
rather than paths [3]. Rösmann et al. [4] and [5] present a
further extension to the elastic band, so called Timed Elastic
Band (TEB), in terms of optimization based trajectory defor-
mation with a sparse structure and the explicit incorporation
of time dependent states. The optimization allows for but
is not limited to kinodynamic constraints and nonholonomic
kinematics. Lau et al. [6] and Sprunk et al. [7] optimize
trajectories represented by splines. Ratliff et al. [8] present an
online planning algorithm that relies on a covariant gradient
descent method.

The majority of optimization based online planning ap-
proaches locally refine an initial coarse path recursively. Such
a local planner continuously deforms the trajectory and is

therefore unable to transform it across obstacles. [9] partially
overcomes these limitations by applying a stochastic descent
method. However, the approach requires extensive sampling
of trajectories in order to estimate the true gradient w.r.t. the
global optimum. Kuderer et al. develop a two stage approach
that generates a set of alternative, topologically distinctive
trajectories subject to local optimization [10]. These alterna-
tives often coincide with local minima of the cost function
and are extracted from a modified Voronoi diagram. It groups
paths that belong to the same equivalence class defined by an
equivalence relation based on the circumvolution of obstacles.
This paper pursues a related approach for filtering distinctive
candidate trajectories in the context of online trajectory plan-
ning. It mainly differs from [10] w.r.t. to the path generation
and sampling strategy and the underlying equivalence relation.

The idea of utilizing topologically distinctive paths and
trajectories for planning and navigation is not novel. How-
ever, past approaches mainly focus on global offline path
and trajectory planning. [11] and [12] present probabilistic
roadmap (PRM) methods that both operate with albeit different
equivalence relations to group trajectories into equivalence
classes. The proposed algorithms are in principle able to
identify complicated paths in large, complex environments but
rely upon an algorithmic rather than closed form computation
of the equivalence relations. Our approach employs a com-
putationally more efficient sampling strategy and equivalence
relation and is thus suited for online trajectory optimization.
Knepper et al. [13] propose a local planner based on path
sampling. The equivalence relation utilizes the Hausdorff
metric and ensures continuity between subsequent iterations.
The planner performs a discrete path selection rather than
deforming continuous trajectories. Bhattacharya et al. [14]
present an equivalence relation from the domain of complex
analysis. The closed form solution motivates its usage in our
approach for trajectory filtering. A related graph free sampling
based approach constructs a multi-scale approximation that
operates with filtrations of simplicial complexes [15].

This contribution presents an integrated online approach
that combines the exploration, filtering and simultaneous op-
timization of a few admissible topologically distinctive trajec-
tories. The approach maintains a set of candidate trajectories
to accomplish their coherence among subsequent iterations of
optimization. The locally optimal trajectory of an equivalence
class is preserved to allow a hot start from previous solutions.
Way point sampling advances not only over space but also
time which significantly reduces the number of samples.

Section II introduces the integrated planning approach.978-1-4673-9163-4/15/$31.00 c© 2015 IEEE



Section III presents and evaluates results obtained in a realistic
simulation of a differential drive mobile robot, its sensors
and environment. The TEB approach borrowed from previous
work is utilized for the underlying trajectory optimization. The
integrated planning approach is compared with the original
TEB and the Dynamic Window Approach (DWA) [16]. Section
IV summarizes the results and provides an outlook on further
work.

II. ONLINE TRAJECTORY PLANNING

A. Problem Definition

The general trajectory optimization problem is concerned
with the computation of the optimal controls u∗ ∈ Rm and is
defined by:

x∗ = argmin
x

J(x), x ∈ X (1)

u∗ = k(x∗) (2)

in which J(x) denotes a nonlinear cost function depending on
the optimization parameter x. The domain X ⊆ Rn is often
referred to as search space described by a set of equality and
inequality constraints. Typically, for unconstrained problems
X represents the euclidean space X = Rn. The function
k : X → Rm denotes the mapping from the optimization
parameters x to the controls u. The choice of k(x) determines
which of the following three most common variants is realized:
1) The sequential approach minimizes J merely w.r.t. the
controls such that u = Ix, the robot states are implicitly
included through forward simulations or substitutions. 2) The
simultaneous approach minimizes J w.r.t. to both the controls
and robot states (typically resulting in a sparse structure).
3) The optimization parameter x is identical with the robot
states, typically defined by a sequence of robot poses aug-
mented with time. In this case u is afterwards inferred from
pairs of subsequent states by inverse kinematics or dynamics
u∗ = k(x∗).

Online optimization of (1) is preferred in order to cope
with dynamic environments and perturbations. Planning of the
optimal trajectory is closely integrated with state feedback
motion control. At each sampling interval, the first entry of
the optimal control sequence controls the robot. In subsequent
sampling intervals the trajectory optimization is repeated w.r.t.
to updated robot states and perceptions. This concept is also
known as Model Predictive Control. Efficiently solving (1)
is usually performed with local optimization techniques such
that J(x∗) ≤ J(x) for all x within a vicinity of x∗. Under
the assumption that J(x) is non-convex, the resulting optimal
solution x∗ strongly depends on the initial parameter x0.

In mobile robot navigation J(x) is usually composed of
terms that smooth and contract the trajectory to either minimize
the time or distance between the current and goal pose. Addi-
tional terms guarantee a minimal separation from obstacles.
In case of an obstacle free environment, the cost function
J(x) for the shortest or fastest trajectory is convex or at least
possesses a unique minimum x∗. In case of obstacles, J(x)
contains terms that depend on the minimal euclidean distance
between the trajectory and obstacles. These cost terms are
concave as they contain a maximum centered at the obstacle.
The cost function J(x) that results from the superposition of
convex and concave terms is non-convex such that under local

deformations trajectories do not transit to the opposite side of
an obstacle. In the worst case a moving obstacle progressively
elongates the trajectory along its direction of motion without
the ability to rather pass the obstacle on its opposite side.
In case the robot encounters two obstacles approaching from
opposite directions the separation constraint is violated and
the robot is forced to stop in order to avoid a collision. This
failure is related to the Freezing Robot Problem in stochastic
motion planning [17]. Even in case of feasible locally optimal
trajectories a global minimum of (1).

Hot starting utilizes the previously planned trajectory to
initialize the next iteration of the solver. However, hot starting
is unable to respond to the above mentioned dynamic sce-
narios. Maintaining and simultaneous optimization of multiple
topological distinctive plans conciliates the advantages of hot
starts with global optimality.

B. Homotopy Classes and Homology Classes

The following sections address the problem of finding the
global minimum of (1). The underlying planning problem is
restricted to trajectories of a planar mobile robot. It makes
no particular assumptions on the representation or shape of
obstacles. The path in terms of a sequence of robot positions,
ignoring its orientation, is defined as τ = {zk ∈ R2 | k =
1, 2, . . . , N}. x = h(τ) denotes the mapping from the (initial)
path to the optimization parameter x. Notice, trajectories may
contain poses as elements of the SE(2) Lie subgroup and
may include temporal information. However, the following
discussion is only concerned with the robot position.

Our approach is based on the theory of homotopy classes.
According to [18] homotopic trajectories are defined by:

Definition 1 (Homotopic trajectories): Two trajectories τ1
and τ2 connecting the same start and goal points zs and
zg respectively, are homotopic if and only if one can be
continuously deformed into the other without intersecting any
obstacles. The set of all trajectories that are homotopic to each
other is denoted as homotopy class.

Based on the above definition 1 local optimization methods
for dynamic problems with hot-starting establish a homotopy
between the solution trajectories τ∗ and τ of subsequent
optimization steps. Let A = {xε ∈ X | J(x∗) ≤ J(xε), xε =
x∗+ ε, ε > 0} denote the (attractive) vicinity of a local mini-
mum x∗. Figuratively, all trajectories τε with xε = h(τε) ∈ A
that converge to the same local minimum are homotopic and
therefore relate to the same homotopy class. It is reasonable to
assume that the cost terms for obstacle clearance are the only
cause for the existence of multiple local minima. In that case a
single representative x

(i)
ε ∈ A(i) of each homotopy class A(i)

provides a valid initial solution of problem (1) and is sufficient
to identify the local minimum x∗(i) of the i-th homotopy class.

The closed form generic computation of homotopy classes
is difficult. [18] suggests substituting the homotopy with
homology classes as they are easier to compute. A homol-
ogy class defines a set of homologous trajectories in which
elements are homologous to each other.

Definition 2 (Homologous trajectories): Two trajectories
τ1 and τ2 connecting the same start and goal points zs and



zg respectively, are homologous if and only if τ1 t−τ2 forms
the complete boundary of a 2D manifold embedded in R2.

Homotopy implies homology, but the reverse implication
does not hold. However, for most practicable mobile robot
planning scenarios, both definitions can be considered as
equivalent. See [18] for further details on the distinction
between homology and homotopy including examples in which
both definitions differ from each other.

[18] and [14] present an analytical approach to determine
homology classes based on complex analysis. In summary,
the homology invariant termed H-signature constitutes an
equivalence relation that assigns a unique complex number
to trajectories of the same homology class. Without loss of
generality, a 2D position zk of a trajectory τ is represented in
the complex domain by zk = xk+ iyk ∈ C (boldface omitted).
The H-signature is originally defined for continuous trajecto-
ries between start and goal points zs and zg respectively. Let
τ̃(t) denote a continuous trajectory such that τ̃(t = 0) = zs
and τ̃(t = T ) = zg , the complex homology invariant is defined
by:

H(τ̃) =
∫
τ̃

F(z)dz (3)

Equation (3) follows immediately from the definition of the
Cauchy’s integral formula [14]. Obviously, F(z) depends on
the obstacle positions according to the remarks of section
II-A. [14] suggest the following function F(z), referred to
as obstacle marker function:

F(z) = f0(z)

(z − ξ1)(z − ξ2) · · · (z − ξR)
(4)

ξl ∈ Ol,∀l = 1, 2, . . . , R denote representative points of R
obstacles. f0 denotes an arbitrary analytic function over C.
Each representative point is arbitrarily chosen from the interior
of the obstacle region respectively obstacle shape Ol ⊂ C. A
particular and suitable choice f0 is suggested in [14].

In order to calculate the H-signature of the discrete tra-
jectory τ , the analytic solution of (3) for line segments is
utilized. [14] derives an analytic expression for a line segment
connecting two points zk and zk+1:

Hs(zk, zk+1) =

R∑
l=1

Al(ln(zk+1 − ξl)− ln(zk − ξl)) (5)

with Al = f0(ξl)∏R
j=1,j 6=1(ξl−ξj)

. The H-signature of a discrete
trajectory (composed of line segments) is calculated by:

H(τ) =
N−1∑
k=1

Hs(zk, zk+1) (6)

Note that the actual implementation of (5) requires the
theory of complex logarithm. [18] suggest choosing the branch
that minimizes the angle between zk+1 − ξl and zk − ξl (by
testing some values α ∈ Z close to zero):

Hs(zk, zk+1) =

R∑
l=1

Al

[
ln(|zk+1 − ξl|)− ln(|zk − ξl|) + . . .

+imin
α∈Z

(
|arg (zk+1 − ξl)− arg (zk − ξl) + 2απ|

)]
(7)

The proposed H-signature determines whether multiple tra-
jectories belong to the same homology class which is fulfilled
if all H-signatures are identically up to numerical precision.

C. Discovery of Homology Classes

Based on the homology invariant proposed in the previous
section, an algorithm for exploring relevant homology classes
is developed. [14] introduces a search graph that is augmented
by H-signatures in order to restrict trajectories to a given
admissible set of homology classes while invoking an A∗-
search for the optimal trajectory. In contrast, our approach does
not attempt to directly solve the planning problem with graph
search. Instead, it solves (1) with a local online optimization
method. This modification requires the ongoing maintenance
of current and discovery of novel homology classes in conjunc-
tion with the underlying trajectory optimization. The required
computation time is of particular importance since solving
nonlinear problems such as (1) still requires a substantial
computational effort. Therefore, the proposed approach gathers
coarse, collision free candidate trajectories which waypoints
are located in forward direction. The H-signature is applied as
a filter to eliminate all but one trajectory for each homology
class.

Given the robots current position zs, goal zg (both in C
notation) and the set of obstacle regions O = {Ol | l =
1, 2, . . . , R}, an exploration graph G = {V, E} is constructed
in order to gather an initial subset of admissible paths. The
set of vertices is defined by V = {zs, ζi, zg ∈ C | ∀ζi /∈
O, i = 1, 2, . . . , I}. ζi ∈ C are waypoint samples that later
may become part of the trajectory. The first exploration stage
seeds waypoints between zs and zg . For the sake of simplicity,
it is assumed that obstacle shapes are circular of limited radius.
A pair of candidate waypoints is placed to the left and right
of each obstacle orthogonal to the line spanned by zs and zg .
This initialization suffices to generate the subset of distinctive
admissible paths. The configuration of obstacles and associated
waypoint candidates is illustrated for an example environment
in Fig. 1. ξl ∈ Ol denotes the representative point of each

zs

zg

ξ1

ξ2

ζ1

ζ2 ζ3

ζ4

Fig. 1: Example of an exploration graph

obstacle marked with a cross. The circle at ξl denotes the
obstacle region Ol.

The set of edges E is constructed from the waypoint seeds.
An edge connects a pair of vertices v1 ∈ V and v2 ∈ V if the
following conditions hold:

• Direction is forward oriented with respect to the goal
heading, such that <[(v2−v1)(zg−zs)]|v2−v1||zg−zs| > θ with θ ∈ [0, 1].

• Line segment L = {v1 + t(v2 − v1) | ∀t ∈ [0, 1]} does
not intersect with any obstacle Ol such that L ∩ O = ∅.



Obviously, the first condition eliminates those paths which
euclidean distance to the goal does not decrease monotoni-
cally. However, online trajectory planners usually obtain their
intermediate goals from a global planner. Assuming that these
subgoals are properly arranged and ordered the restriction to
acyclic graphs is justified. This condition significantly reduces
the number of candidate trajectories and computational effort
of graph search. The threshold θ for the angular width of the
forward direction can be increased to further narrow the line
of sight. Edges for the example above are shown in Fig. 1 as
arrows.

Based on the generated graph G, its simple paths between
zs and zg are extracted by a depth-first search augmented
by a visited list. The H-signature for each path is calculated
according to (6) and is added to the set of known signatures
in case it is not a member yet. Path candidates with duplicate
H-signature are discarded. The filtered graph for the example
above is shown in Fig. 1 with bold solid lines.

The two steps of finding all simple paths and filtering
homologue paths is combined into a single search algorithm
to improve efficiency. Algorithm 1 constitutes a modified

Algorithm 1 Find paths in alternative homology classes

Input: G - reference to the acyclic graph; B - reference to an
ordered visited list containing only zs; zg - goal vertex; T
- reference to the trajectory set; H - reference to the set
of H-signatures

Output: Updated set of trajectories and H-signatures
1: function DEPTHFIRST(G, B, zg, T,H)
2: if max. size of T is reached then
3: return
4: b ← B.back() . Get last visited vertex
5: for each adjacent vertex v of vertex b in G do
6: if v ∈ B then . Already visited
7: continue
8: if v == zg then . Goal reached
9: B.append(v) . Finalize trajectory

10: h ← CALCHSIG(B) . See Eq. (7)
11: if h /∈ H then
12: x ← INITTRAJECTORY(B) . x = h(τ)
13: T .append(x) . Save complete trajectory
14: H .append(h) . Store H-signature
15: break
16: for each adjacent vertex v of vertex b in G do
17: if v ∈ B or v == zg then . Already visited or

goal reached
18: continue
19: B.append(v)
20: DEPTHFIRST(G, B, zg, T,H) . Recursion step
21: B.pop(v)

return

recursive depth-first search. The set B contains those vertices
already visited such that after reaching the goal, B consists of
the complete path candidate from zs to zg . This path candidate
is matched with potential homologue duplicates in H in line
10 and 11. If its homology class is novel, the corresponding
trajectory for the underlying optimization problem is initialized
from the path B. The coarse path defined by {zs, ζi, zg} is
subsampled and the orientation parts of the poses are initialized

according to the direction among subsequent positions. Rather
than storing the 2D position part τ of the trajectories, the
complete optimization parameter x is stored for subsequent
hot-starts of the optimization. The number of maximum dis-
tinctive topologies is specified at line 2 in order to limit the
computation time.

For arbitrary obstacle shapes Ol, the above simply sam-
pling strategy for candidate waypoints to the left and right
side is not applicable. Instead, waypoint sampling follows the
probabilistic roadmaps (PRM) approach [19]. Waypoints ζl
are sampled uniformly from a predefined region S ⊆ C. The
remaining steps are identical to the algorithm outlined above.
Obviously, the computation time increases exponentially with
an increasing number of samples. However, our experience
suggest that a few samples (10− 20) are sufficient to discover
the admissible paths. The sampling is repeated at each iteration
such that novel homology classes might still be discovered
at a later stage. The proposed approach is based on the
assumption, that the global minimum (1) is among a subset
of few admissible trajectories that do not detour substantially
from the straight line connection between start and goal. It
is highly likely that the globally optimal trajectory is among
the first two to five distinctive homology classes. Fig. 2a
and 2b show examples for the discovery of homology classes
(30 waypoints and line of sight parameter for edges θ = 0.4).
The mean number of subsequent iterations required to discover

TABLE I: Exploration and runtime analysis of the example
shown in Fig. 2. All values are mean values that are subject
to 100 repetitions.

No. samples Iter. up to 4th class Iter. up to 7th class CPU time

3 12.2 − 0.05 ms
8 3.8 13.7 0.2 ms
15 1.7 7.0 1.1 ms
25 1 2.4 12 ms

4 and 7 homology classes as well as the mean computation
time for varying number of samples are shown in table I
(3.4Ghz Intel i7).

D. Trajectory Discovery & Online Optimization

The following section describes the integration of the
homology class discovery with the trajectory optimization
inside the robot control feedback loop. Algorithm 2 lists the
principal planning step invoked at each control cycle of the
mobile robot. The first invocation (T = ∅) creates a new
graph (line 8) according to section II-C by seeding random
samples in a region of interest (typically a rectangular or a
semicircle connecting zs and zg). Afterwards the modified
depth first search is invoked according to Alg. 1 that discov-
ers the distinctive homology classes and initializes a single
representative trajectory for each class in T . The trajectories
∀x ∈ T (line 10-11) are optimized simultaneously according to
(1). The globally optimal trajectory x∗ is selected according
to the cost function: x∗ = argminx∈T J(x) and the (sub)
optimal control u∗ = k(x∗) is returned.

In subsequent iterations of the control cycle, T and H
already contain candidate trajectories optimized in previous
iterations. The current start z0 and goal zg are updated ac-
cording to the novel robot state and perceptions. The current



Algorithm 2 Perform a single local planning step

Input: zs - start point; zg - goal point; T - reference to the
trajectory set; H - reference to the set of H-signatures; O
- set of obstacles

Output: (Sub-)optimal control u∗
1: function PLANTRAJECTORIES(zs, zg, T,H,O)
2: if T is not empty then . T .size() == H .size()
3: T ← UPDATETRAJECTORIES(T, zs, zg)
4: (T,H) ← DELETEDETOURS(T, zs, zg,O)
5: H ← RENEWHC(T,H,O)
6: B ← allocate empty visited list
7: B.append(zs)
8: G ← CREATEGRAPH(O)
9: DEPTHFIRST(G, B, z, T,H)

10: for each trajectory x ∈ T do . parallelizable
11: x ← CALLOPTIMIZER(x,O) . solve Eq. (1)
12: x∗ ← SELECTGLOBALOPTIMALTRAJECTORY(T,O)

return corresponding control u∗ according to Eq. (2)

set of trajectories is validated for admissibility. In particular
the edge conditions of section II-C are verified. In case of a
violation the trajectory and the corresponding H-signature are
eliminated. The current H-signatures are updated in case the
obstacle configuration changes.

III. EXPERIMENTAL RESULTS AND EXAMPLES

The proposed planning algorithm 2 is integrated with the
Timed Elastic Band (TEB) sparse online trajectory planning
approach for non-holonomic mobile robots [4], [5]. The in-
tegrated architecture and functions are introduced and two
different mobile robot scenarios are presented and evaluated.
Detailing the complete TEB approach is beyond the scope
of this paper. Fig. 2 demonstrates the proposed algorithm in
combination with the TEB optimization for two subsequent
online planning steps.

The following two scenarios demonstrate the application
of the proposed algorithm to closed-loop control of a Pioneer
3DX differential drive mobile robot in environments with
dynamics obstacles. Algorithms run on a PC with a 3.4Ghz
Intel i7 CPU. The current position of obstacles (humans and
walls) is tracked with a laser scanner. Translational and angular
velocities are limited to vmax = 0.4 m

s and ωmax = 0.3 rad
s

respectively. The desired minimal separation from obstacles is
0.5m.

The proposed method is compared with the classical TEB
approach (without homology class exploration) and the dy-
namic window approach (DWA) [16]. The DWA is a state-
of-the-art method for mobile robot navigation. Trajectories
are sampled at each control cycle from a velocity search
space restricted by a feasible set of velocities. The least
cost trajectory controls the robot. Due to the sampling based
strategy the DWA easily detects multiple local minima in
contrast to continuous optimization techniques with hot-starts.
The DWA forward simulation time for each sample is 6 s in
order to obtain a trajectory length comparable to the other
methods. The implementation of Both TEB approaches1 are

1Sourcecode of both algorithms and a video are available online [21].

implemented in C++ and ROS [20]. The DWA is already
available in ROS.

Fig. 3: Scenario 1: Traces of the robot’s odometry and
the human’s movement (grey line). Legend: black (proposed
method); blue (TEB without homology class exploration),
green (dynamic window approach). Cell size: 1m2.

The first scenario evaluates the closed-loop behavior of the
planner in case the optimal trajectories transits from one to the
opposite side of a moving obstacle. In this scenario a human
ignoring the approaching robot moves towards a wall. The
initially optimal trajectory passes between the wall and the
human and becomes inadmissible as the human together with
the wall forms a barrier. Fig. 3 shows the closed loop trajectory
of the robot in response to the evolution of the human motion.
At the beginning all planners prefer the fastest trajectory from
the homology class between the human and the wall. The
classical TEB gets stuck at the local minimum and collides
with the obstacle. The DWA first slows down the robot before
switching to the opposite sides. The transition is initiated too
late such a collision can not be avoided. The TEB optimization
with distinctive topologies discovers the opportunity to pass on
the opposite side early on, as it considers the alternative path
from the beginning.

Fig. 4: Scenario 2: Traces of the robot’s odometry and the
humans’ movements (grey lines). Legend: black (proposed
method); blue (TEB without homology class exploration),
green (dynamic window approach). Cell size: 1m2.

The second scenario demonstrates the online planning in an
open space environment with eight dynamic ignorant obstacles
which traces are shown in Fig. 4. The classic TEB collides
halfway through the transition of the group, as its preferred
trajectory is elongated by the diagonal motion of the human
in blue. In addition, the human in dark green causes the
robot to collide, since the local planner is unable to switch
the homology class. The proposed planner and the DWA are
both able to find a collision free path to the goal despite the
obstruction caused by the dynamic obstacles. The closed loop
trajetory of our approach stays close to the ideal straight line
between start and goal. Fig. 5 shows the corresponding trans-
lational velocity profile of the robot for the different planners.
The DWA often reduces the robot speed in order to avoid
imminent collisions. In contrast, the ability of our approach to
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Fig. 2: Actual application of Alg. 2. Planning is performed using the TEB approach. (a) Simple paths found without homology
filtering (line of sight restricted to π/3). (b) Simple paths found with homology filtering activated. (c) Optimization result (TEB).
(d) Subsequent call of Alg. 2: existing homology classes are kept, but two new ones have been explored and added.
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Fig. 5: Transl. velocity profile of the robot in scenario 2

consider alternative future evolutions of a scenario is able to
navigate the robot at maximum speed towards the goal. Note,
the DWA implementation reduces speed while approaching the
goal, therefore the actual travel time is incomparable.

IV. CONCLUSIONS AND FUTURE WORK

The integrated approach of homology class exploration and
trajectory optimization for closed-loop planning and control
offers the advantage to account for alternative evolutions of
scenarios of dynamic obstacles. The comparison with two
planners that do not consider distinctive topological trajectories
in simulation illustrates the benefits of multiple trajectory
planning.

Future work is concerned with extending the search for
alternative topologies to not only spatial but also temporal do-
main. In order to establish the practical usefulness of homology
based planners it is of interest to analyze the computation time
of alternative equivalence relations proposed in the literature.
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